Toward an Open Science Ecosystem in

Neuroimaging

Russ Poldrack Stanford University

Transparency is essential for reproducibility

Different

Replicable

Generalisable

"we can distill Claerbout's insight into a slogan:

An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development

Why neuroimaging is a best-case scenario for open science

- Magnetic resonance imaging (MRI) is the primary tool for studying human brain structure and function
- MRI data are digital end-to-end

Ξ

- From MRI scanner to automated analysis
- Usually zero/few manual analysis https://poldrack

A false start for fMRI data sharing

A false start for fMRI data sharing

nature neuroscience

A debate over fMRI data sharing

3 August 2000 Volume 406 Issue no 6795

Whose scans are they, anyway?

This letter comes from a group of scientists who are publishing papers using fMRI to understand the links between brain and behavior. We are writing in reaction the recent announcement of the creation of the National fMRI Data Center (www.fmridc.org). In the letter announcing the creation of the center, it was also implied that leading journals in our field may require authors of all fMRI related papers accepted for publication to submit all experimental data pertaining to their paper to the Data Center. ... 6/65 We are particularly concerned with any journal's

2010: The year data sharing broke in neuroimaging

Toward discovery science of human brain function

Bharat B. Biswal^a, Maarten Mennes^b, Xi-Nian Zuo^b, Suril Gohel^a, Clare Kelly^b, Steve M. Smith^c, Christian F. Beckmann^c, Jonathan S. Adelstein^b, Randy L. Buckner^d, Stan Colcombe^e, Anne-Marie Dogonowski^f, Monique Ernst^g, Damien Fair^h, Michelle Hampsonⁱ, Matthew J. Hoptman^j, James S. Hyde^k, Vesa J. Kiviniemi^l, Rolf Kötter^m, Shi-Jiang Liⁿ, Ching-Po Lin^o, Mark J. Lowe^p, Clare Mackay^c, David J. Madden^q, Kristoffer H. Madsen^f, Daniel S. Margulies^r, Helen S. Mayberg^s, Katie McMahon^t, Christopher S. Monk^u, Stewart H. Mostofsky^v, Bonnie J. Nagel^w, James J. Pekar^x, Scott J. Peltier^y, Steven E. Petersen^z, Valentin Riedl^{aa}, Serge A. R. B. Rombouts^{bb}, Bart Rypma^{cc}, Bradley L. Schlaggar^{dd}, Sein Schmidt^{ee}, Rachael D. Seidler^{ff,u}, Greg J. Siegle^{gg}, Christian Sorg^{hh}, Gao-Jun Tengⁱⁱ, Juha Veijola^{jj}, Arno Villringer^{ee,kk}, Martin Walter^{II}, Lihong Wang^q, Xu-Chu Weng^{mm}, Susan Whitfield-Gabrieliⁿⁿ, Peter Williamson^{oo}, Christian Windischberger^{pp}, Yu-Feng Zang^{qq}, Hong-Ying Zhangⁱⁱ, F. Xavier Castellanos^{b,j}, and Michael P. Milham^{b,1}

Data sharing is becoming the norm in neuroimaging

Ξ

An open ecosystem for retrospective data sharing

Veurosynth.org (beta) Home Meta-analyses+ Studies Locations Decoder Code FAQs Sign in

neurosynth.org

Neurosynth is a platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data.

It takes thousands of published articles reporting the results of fMRI studies, chews on them for a bit, and then spits out images that look like this:

https://poldrack.github.io/talks-OpenScienceEcosystem/

Breadth

- Neurosynth.org: Open database of published neuroimaging coordinates
- Neurovault.org: Open archive for neuroimaging results
- OpenNeuro.org: Open 9/65

Maximally open sharing

- Data shared under maximally permissive data use agreements:
 - Neurosynth: Open Data Commons Open Database License v1.0
 - Neurovault: CC0
 - OpenNeuro: CC0
- All data available programmatically via web API

 CC0 enables scientists, educators, artists and other creators and owners of copyright- or database-protected content to waive those interests in their works and thereby place them as

10 / 65

Neurosynth: Sharing activation coordinates

• Brain activity is reported in a (somewhat) standardized coordinate system

Table 1

Ξ

Regions that showed a condition × time interaction in the ANOVA analysis

0.000							
No.	Region	Hemisphere	BA	x	y	z	mm ³
1	Middle/superior temporal gyrus	L	21/22/37	- 52	-54	9	13257
2	Inferior frontal gyrus	L	45/46/9	- 49	26	6	2781
3	Posterior cerebellum	L		-19	-79	-38	2214
4	Dorsomedial PFC	L	9/8	-11	42	47	3051
5	Left anterior PFC	L	10	-37	49	15	2025
6	Inferior parietal cortex	L	40/7	-42	-58	47	3132
7	Dorsal premotor cortex	L	6	-43	0	50	1485
8	Lingual gyrus	L	17	-10	-95	-2	378
9	Middle /superior temporal gyrus	R	21/22/37	52	-40	5	16470
10	Inferior frontal gyrus	R	45/46	51	28	6	2241
11	Posterior cerebellum	R https://poldra	ack.github.io/talks-OpenScienceEcosystem	23	-78	-34	2808
12	Doreomadial PEC	P	0	5	53	20	405

11 / 65

Creating meta-analytic maps

- Automated Coordinate Extraction
 - Automatically extracts activation tables from fMRI papers for 17 journals
 - Current database has 14,371 papers (with full text)
- 84% sensitivity, 97% specificity
 Yarkonigatins fills Addated Base (SumsDB)
- https://poldrack.github.io/talks-

Χ	Y	Ζ
12	57	-6
33	21	15
24	-6	51
28	10	18

working memory

An automated meta-analysis of 1091 studies

Search for another term:

memory: association test	Ê	Ŧ
memory: uniformity test	â	Ŧ
al	莭	Ŧ

Classification

Classification

 \equiv

Decoding brain activity patterns using Neurosynth

Example of Neurosynth usage

Situating the default-mode network along a principal gradient of macroscale cortical organization

Daniel S. Margulies^{a,1}, Satrajit S. Ghosh^{b,c}, Alexandros Goulas^d, Marcel Falkiewicz^a, Julia M. Huntenburg^{a,e}, Georg Langs^{f,g}, Gleb Bezgin^h, Simon B. Eickhoff^{i,j}, F. Xavier Castellanos^{k,I}, Michael Petrides^m, Elizabeth Jefferies^{n,o}, and Jonathan Smallwood^{n,o}

November 1, 2016 12574-12579 PNAS vol. 113 📋 no. 44

eye movements visual perception pain action face/affective processing reading NeuroSynth topics terms visual semantics multisensory proc. visuospatial auditory processing visual attention language cued attention inhibition working memory numerical cognition cognitive control declarative memory reward-based decision autobiographical mem.

 \equiv

- gradient

 Identified gradients of functional organization across the cortex

 Used Neurosynth to identify the most common terms associated with each

Neurovault: Sharing neuroimaging results

- The results of most neuroimaging studies are images with statistical estimates at each voxel
- Neurovault.org is an open archive for these results

Give feedback

FAQ

- Gorgolewski et al., 2015, Frontiers in Neuroinformatics

NeuroVault

Collections +

Q Log in

Collections

- A set of images (such as all images from a particular paper) can be uploaded as a collection
- Each collection receives a persistent identifier

NeuroVault Collections

Metaanalyses

About

Preprocessed Consortium for Neuropsychiatric Phenomics dataset

Related article: http://doi.org/10.12688/f1000research.11964.2

Source data:

Shov

Citation guidelines

If you use the data from this collection please include the following persistent identifier in the text of your manuscript:

https://identifiers.org/neurovault.collection:2606 https://poldrack.github.io/talks-OpenScienceEcosystem/

This will belo to track the use of this data in the literature. In addition, consider also citing the paper related to this collection.

Search

roup	Metao	data				
w 7	♦ enti	ries	Sear	ch:		
w	ID N	Name			N	Туре ঝ
	49974	BART Accept				T map
>	49975	BART AcceptPar	am - Exp	lodeParam		T map
	49976	BART AcceptPar	am - Reje	ectParam		T map
>	49977	BART AcceptPar	ametric			T map
	49978	BART Accept_R	Г			T map
>	49979	BART Control				T map
	49980	BART Explode -	Reject			T map
wing 1	l to 7 of 1	78 entries	First	Previous	Next	Last

• Image browser

- Individual images can be browsed and downloaded
- A number of analysis tools can also be applied
- Each image also receives a persistent identifier

BART Accept_RT

Contributed by ChrisFiloGorgolewski on June 20, 2017

Collection: Preprocessed Consortium for Neuropsychiatric Phenomics dataset

Task View	3D View	Download 👻	Analysis 🤻
File View	Settings He	elp	Cognitive Similar m Gene exp Power ar
			X
		1	

Ξ

Example of Neurovault usage Comprehensive decoding mental processes from Web repositories of functional brain images

Romuald Menuet^{5,6}, Raphael Meudec^{1,2,3,6}, Jérôme Dockès⁴, Gael Varoquaux^{1,2,3} & Bertrand Thirion^{1,2,3}

Scientific Reports | (2022) 12:7050

21 / 65

OpenNeuro: Sharing raw and processed neuroimaging data

Validation Using BIDS

The Brain Imaging Data Structure (BIDS) is an emerging standard for the organization of neuroimaging data.

Want to contribute to BIDS?

Ξ

Visit the Google discussion group to contribute.

OpenNeuro Runs on DataLad

Want to access OpenNeuro datasets with DataLad? Visit the dataset collection on

<u>GitHub.</u> https://poldrack.github.io/talks-OpenScienceEcosystem/

A data management solution built on Git and Git-

Simply sharing data is not sufficient It must be shared in a way that makes it useful!

It's easy to share data badly

Data Sharing and Management Snafu in 3 Short Acts

- I received the data, but when I opened it up it was in hexadecimal
- Yes, that is right
- I cannot read hexadecimal
- You asked for my data and I gave it to you. I have done what you asked.

Brain Imaging Data Structure (BIDS)

- A community-based open standard for neuroimaging data
 - A file organization standard
 - A metadata standard

Received: 18 December 2015 Accepted: 19 May 2016 Published: 21 June 2016

SCIENTIFIC DATA

The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

Krzysztof J. Gorgolewski¹, Tibor Auer², Vince D. Calhoun^{3,4}, R. Cameron Craddock^{5,6}, Samir Das⁷, Eugene P. Duff⁸, Guillaume Flandin⁹, Satrajit S. Ghosh^{10,11}, Tristan Glatard^{7,12}, Yaroslav O. Halchenko¹³, Daniel A. Handwerker¹⁴, Michael Hanke^{15,16}, David Keator¹⁷, Xiangrui Li¹⁸, Zachary Michael¹⁹, Camille Maumet²⁰, B. Nolan Nichols^{21,22}, Thomas E. Nichols^{20,23}, John Pellman⁶, Jean-Baptiste Poline²⁴, Ariel Rokem²⁵, Gunnar Schaefer^{1,26}, Vanessa Sochat²⁷, William Triplett¹, Jessica A. Turner^{3,28}, Gaël Varoquaux²⁹ & Russell A. Poldrack¹

The development of BIDS

- January 2015
 - Initial stakeholder meeting at Stanford (funded by INCF)
 - Initiated development of a draft standard
- September 2015
 - Draft standard posted to BIDS web site with 22 example datasets
 - Solicited feedback from community
- ≡ June 2016

BIDS Principles

- Adoption is crucial
 - Keep it as similar to existing practices as possible
 Don't let technology override usability!
 - Focus on engaging the community
- Don't reinvent the wheel
 - Use existing standards when possible

≡ • *80/20 rule*

From DICOM to BIDS

ldicomdir/

1208200617178_22/ 1208200617178_22_8973.dcm 1208200617178_22_8943.dcm 1208200617178_22_2973.dcm 1208200617178_22_8923.dcm 1208200617178_22_4473.dcm 1208200617178_22_8783.dcm 1208200617178_22_7328.dcm 1208200617178 22 9264.dcm

https://poldrack

The importance of automated validation

Summary

- 40 Files, 18.42kB
- 13 Subjects
- 1 Session

Available Tasks

• rhyme judgment

Your dataset is not a valid BIDS dataset.

Available Modalities

- bold
- T1w

BIDS Extensions

- BIDS was originally focused on structural/functional MRI data
- BIDS extension process allows extension of the standard through BIDS Extension Proposals (BEPS) initiated by the community
 - Patterned after the Python Enhancement Proposal (PEP) process.io/talks-Opm

	11 Comple	ete
	BEP #	Ti
	BEP001	Q
	BEP003	С
	BEP005	A
	BEP006	EI
	BEP007	Н
		Та
alks-	^{op} BEP008	Μ

Ξ

d BEPs:

itle

- uantitative MRI (qMRI)
- ommon Derivatives
- rterial Spin Labeling (ASL)
- lectroencephalography (EEG)
- ierarchical Event Descriptor (HED)
- ags
- Magnetoencephalography (MEG)

The growing usage of BIDS: An example

- MRIQC Web API
 - Crowdsourced database of MR QC metrics
 - QC metrics from ~375K unique BOLD scans and ~280K T1w scans as of June 2022
 - Publicly available: https://mriqc.nimh.nih.gov/

Received: 19 September 2018 Accepted: 12 March 2019

350000

300000

https://poldrack.github.io/talks-Op

SCIENTIFIC DATA

OPEN Crowdsourced MRI quality metrics DATA DESCRIPTOR and expert quality annotations for training of humans and machines

Oscar Esteban ¹, Ross W. Blair¹, Dylan M. Nielson², Jan C. Varada³, Sean Marrett³, Adam G. Thomas ², Russell A. Poldrack ¹ & Krzysztof J. Gorgolewski ¹

datatype bold T1w

BIDS enables a growing open-source software ecosystem

Ξ

formats (e.g., NIfTI, GIFTI, and ČIFTI2).

Projects maintained by the **NiPreps community**

MRIQC

Quality Control (QC) of MRI (structural and functional)

MRIQC produces visual reports for the efficient screening for quality of MRI data, and estimates quality metrics to learn machines flag subpar data.

MRIQCnets

Machine learning for QC and protocol assessment

Deep Learning models to support higher-level application, such as the deep-MRIQC, the Euler Number Predictor, or the FaceDetector.

The workflow engine supporting the execution graph and run time management (staging tasks, communication, data flow).

The data specification prescribing the formal structure for the neuroimaging data inputs

RESEARCH ARTICLE

BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods

Krzysztof J. Gorgolewski¹*, Fidel Alfaro-Almagro², Tibor Auer³, Pierre Bellec^{4,5}, Mihai Capotă⁶, M. Mallar Chakravarty^{7,8}, Nathan W. Churchill⁹, Alexander Li Cohen¹⁰, R. Cameron Craddock^{11,12}, Gabriel A. Devenyi^{7,8}, Anders Eklund^{13,14,15}, Oscar Esteban¹, Guillaume Flandin¹⁶, Satrajit S. Ghosh^{17,18}, J. Swaroop Guntupalli¹⁹, Mark Jenkinson², Anisha Keshavan²⁰, Gregory Kiar^{21,22}, Franziskus Liem²³, Pradeep Reddy Raamana^{24,25}, David Raffelt²⁶, Christopher J. Steele^{7,8}, Pierre-Olivier Quirion¹⁵, Robert E. Smith²⁶, Stephen C. Strother^{24,25}, Gaël Varoquaux²⁷, Yida Wang⁶, Tal Yarkoni²⁸, Russell A. Poldrack¹

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005209 March 9, 2017

Containerized applications that can be run on a BIDS dataset

Containers provide ease of use as well as better reproducibility

fMRIprep: Robust preprocessing of fMRI data

transformations

MRIQC: MRI quality control for BIDS data

Data points in the scatter plots of the group report can be clicked to open the corresponding individual report. This feature is particularly useful to identify low-quality datasets visually.

https://po

Tenmplateflow: FAIR Sharing of Neuroimaging Templates

- Templates and atlases are commonly used in neuroimaging
- There is a significant lack of clarity in the use of these templates

Ξ

 There are numerous versions of the widely used "MNI

OpenNeuro: A BRAIN Initiative archive for BIDS data

 \equiv

• Supports sharing of any validated BIDS dataset

Ξ

SEARCH SUPPORT FAQ

_

Search All Datasets

Keywords ?	These filters return 194 datasets:
Enter Keyword(s) to Search	KEYWORD:
reading X	
	The Reading Brain Project L1 Adults
Modalities	Uploaded by: Chanyuan Gu on 2022-01-07 - 10 months ago Updated: 2022-01-05 - 10 months ago
	MODALITY:
MRI	MRI
PET	TASKS:
EEG	read task rest
iEEG	OPENNEURO ACCESSION NUMBER: ds003974 SESSIONS: 1 PARTICIPANTS: 52 PARTICIPANTS' AGES: N/A
MEG	https://poldrack.github.io/talks-OpenScienceEcosystem/

Sign in	
CLEAR ALL	
SORT BY: Relevance 1	
ب	
FILES: 893	SIZE: 46.67GB

Uploaded by

Each shared dataset is versioned and

receives a persistent identifier (DOI)

Any valid BIDS dataset can be shared via OpenNeuro

Openneuro

G Google

A free and open platform for validating and sharing BIDScompliant MRI, PET, MEG, EEG, and iEEG data

29,064 Participants

761 Public Datasets

Browse by Modalities		~
Or		
Search		٩

🝺 orcid

 \equiv

 \equiv

SEARCH SUPPORT FAQ UPLOAD

A free and open platform for validating and sharing BIDS-compliant <u>MRI</u>, <u>PET</u>, <u>MEG</u>, <u>EEG</u>, and <u>iEEG</u> data

29,064 Participants

761 Public Datasets

Browse by Modalities	~
Or	
Search	2

Ξ

Not all subjects/sessions/runs have the same scanning parameters.

	Upload Dataset				×
	Step 1: Select Files	Step 2: Validation	Step 3: Metadata	Step 4: Accept Terms	
MRI Rhyme judgment 🖻 Edit	Incomplete fields in th dataset. We recommend com	his form will make it mo pleting the applicable fi	ore difficult for users t ields to improve your	to search for your search results.	
This dataset l	DOI of papers from	n the source data lab			e them pu
BIDS Validation 🗸	Рар	ers that were published from t	he Lab that collected this da	taset	uro Accessi
🖿 Files 🔒 Share 🔯 Versioning 🏼 🎘 Adm	Species			*	03
How to Download	Study Type			*	Russell A.
Download with your browser	Domain Studied				Modalities
This method is convenient and allows you to select a local dia Steps	Number of Trials (i	f applicable) http	os://poldrack.github.id	o/talks-OpenScience	Ecosystem/

 \equiv

				Му Ас	count	
	🖈 Follow	1	Bookr	nark	2	
с.						
Number						
ldrack						

This method is convenient and allows you to select a local di

Upload Dataset

Step 1: Select Files Ste

Step 2: Validation Step

Step 3: Metadata

Step 4: Accept Terms

By uploading this dataset to OpenNeuro I agree to the following conditions:

I am the owner of this dataset and have any necessary ethics permissions to share the data publicly. This dataset does not include any identifiable personal health information as defined by the <u>Health Insurance Portability and Accountability Act of</u> <u>1996</u> (including names, zip codes, dates of birth, acquisition dates, etc). I agree to destroy any key linking the personal identity of research participants to the subject codes used in the dataset.

I agree that this dataset will become publicly available under a <u>Creative Commons</u> <u>CCO</u> license after a grace period of 36 months counted from the date of the first snapshot creation for this dataset. You will be able to apply for up to two 6 month extensions to increase the grace period in case the publication of a corresponding paper takes longer than expected. See <u>FAQ</u> for details.

This dataset is not subject to GDPR protections.

Generally, data should only be puplicated to laisingle data scale bashe and cases where it is necessary to upload the data to two databases (such as the NIMH Data

×				My Account	
		🚖 Follow	1 🖪 Bool	kmark 2	
	e them public.				
	uro Accession Number				
	Duccell A. Deldwork				
	Russell A. Poldrack lit				
	Modalities				

 \equiv

users of the data will acknowledge the OpenfMRI project and NSF Grant OCI-1131441 (R. Poldrack, PI) in any publications.

The growth of OpenNeuro

The diversity of OpenNeuro datasets

#	Species	#
597	Human	676
521	Mouse	20
120	Rat	12
67	NHP	2
30	phantoms	1
17	Juvenile pigs	1
13	Human, Mouse	1

Scholarly reuse of OpenNeuro datasets

Figure 5. Published reuses of OpenNeuro datasets, split by the type of reuse. Note that the final bar includes only reuses identified through June 2021.

Processing of OpenNeuro data

Data Summary

Subject: sub-001 Session(s): 1, Run(s): 1 Data size: 32 channels, 298k frames Acceptable scalp channels: 100.0% (32 of 32) ① Acceptable data points channels: 90.9% (271k of 298k) 🕕 Source quality metric based on independent component: 48.4% 🕕

Scalp channel log spectra

NEN

Sample scalp channel data (mid 2 seconds)

brainlife.io: processing of MRI data

br	rainlife <	Q Search Projects						
æ	DATASETS	PUBLIC/PROTECTED PROJECT	S					
 PROJECTS APPS PUBLICATIONS DATATYPES 		HCP 3T / Diffusion • anat/t1w • transform/nifti • anat/t2w • hcp/freesurferpost • raw • dwi • freesurfer Human Connectome Project Datasets - Diffusion MRI 3T (1200-subjects-data-	HCP 7T / Diffusion • anat/t1w • dwi Human Connectome Project Datasets – Diffusion MRI 3T (184 out of 1200–					
		1112 sub 6880 objs (4.51 TB) HCP 3T Retest / Diffusion • transform/nifti • dwi • hcp/freesurferpost • anat/t2w • freesurfer • anat/t1w 45 HCP 3T subjects retested	150 sub 300 objs (22.56 MB) O3D • networkneuro • freesurfer • anat/t1w • wmc- deprecated • dwi • dtiinit • recon • track/tck • LiFE • track/trk O3D (Open Diffusion Data and Derivative) is a reference repository for precision https://poldrack.gith					

Example of OpenNeuro reuse

- A challenge for decoding brain activity from fMRI data is that most datasets are very small
- We used OpenNeuro to train a "foundation model"
 - A pre-trained model that can be used as a starting point for decoding models on smaller datasets
- We pre-train models on broad fMRL data OMBS, Ré, & Poldrack, 2022, *Neurips* from OpenNeuro: 11 980 experimental

https://poldrack.github.io/talks-OpenScienceEcosystem/

<u>Acc. (±SE):</u> • *94.8(±.35)% 91.5(±.44)% 89.8(±.48)% 89.2(±.49)% • 51.9(±.79)%

Challenges to open sharing

- All OpenNeuro MRI datasets must be *defaced*
 - To reduce risk of reidentification
- There is increasing risk that subjects might be reidentified even after defacing using advanced face recognition systems + face imputation tools (Schwartz et al., 2021)
- If the risk continues to rise, it may become necessary to move away from open sharing

Ξ

This would be a huge loss for researchers. This would be a huge loss for researchers. Coordinate

80 Clipping	Min 0 Max 602.73
0	× 111 ○ 2.60 Volume 0 ○ Y 128 ○ 26.90 Intensity 421.008 Z 128 ○ 12.70 Intensity 421.008 Coordinate space: Scanner Anatomical ● ● ●

Keys to success in neuroimaging data sharing

- Data are digital end-to-end
 - Minimizes manual steps in the process
- Standardized file formats and data standards
 - Makes data immediately usable by anyone
 - Reduces burden of curation and preparation
- Demonstrated scientific utility
- • Numerous success stories

Lessons learned

- Community buy-in is essential
 - Mandates put in place before the community is ready can backfire
 Unless they have overwhelmingly powerful advocates, as in genomics
 - Important that sharing advocates are members of community and eat their own dog food

dy can backfire ates, as in genomics community and eat their own

Lessons learned

- Keep it simple and as close to standard practice as possible
 - Overengineered solutions have generally failed
 - If there are more than 2 acronyms...

Lessons learned

Ξ

- Don't let the perfect be the enemy of the good
 - 20% of the effort will cover 80% of the datasets - focus on these!
 - There is a long tail of edge cases with loud advocates

Conclusions

- The field of neuroimaging has built an model ecosystem for open science and data sharing
- Infrastructure is critical to ease friction
- Community engagement has been key to adoption
- Need to keep the tools as close as possible to current practice

The Poldrack Lab

Funding

Ξ

National Institute of Mental Health

https://poldrack.github.io/talks-OpenScienceEcosystem/

OpenNeuro Team

Collaborators

Meta-analytic decoding using Neurosynth

- Given 2+ terms, can determine which is most likely given the data
- Naive Bayes classifier: assumes that all features (voxels) are independent; selects the most probable class
- Can apply this to any activation map—studies, individual subjects, etc.

Yarkoni et al. 2011, Nature Methods

- Cross-validated classification of all studies in database
- Select 25 highfrequency terms
- Pairwise classification: how well can we distinguish between the presence of each

 $= Y_{a} R H h h f = 1. Nature Methods 74 73 73 74 71 81 76 69 72 73 65 63 56 60 72$

Semantic	72														
Encoding	62	68													
Executive	70	61	68												
Language	62	68	70	73											
Verbal	69	67	53	69	69										
Phonological	68	72	79	64	62	76									
Visual	73	67	63	73	70	67	71								
Interference	65	62	52	66	57	74	55	66							
WM	72	68	54	71	60	75	68	56	70						
Conflict	77	67	64	74	67	77	75	61	63	73					
Spatial	77	68	63	76	67	76	67	62	64	71	69				
Attention	74	65	64	74	69	73	69	56	65	67	54	69			
Imagery	69	65	61	68	64	77	61	62	56	72	53	54	67		
Action	75	70	71	77	69	73	65	64	68	72	63	57	54	71	
othade	74	72	72	74	71	01	76	CO	70	72	GE	62	FC	60	70

